23 research outputs found

    Improving multilingual speech recognition systems

    Get PDF
    End-to-end trainable deep neural networks have become the state-of-the-art architecture for automatic speech recognition (ASR), provided that the network is trained with a sufficiently large dataset. However, many existing languages are too sparsely resourced for deep learning networks to achieve as high accuracy as their resource-abundant counterparts. Multilingual recognition systems mitigate data sparsity issues by training models on data from multiple language resources to learn a speech-to-text or speech-to-phone model universal to all languages. The resulting multilingual ASR models usually have better recognition accuracy than the models trained on the individual dataset. In this work, we propose that two limitations exist for multilingual systems, and resolving the two limitations could result in improved recognition accuracy: (1) existing corpora are of the considerably varied form (spontaneous or read speech), corpus size, noise level, and phoneme distribution and the ASR models trained on the joint multilingual dataset have large performance disparities over different languages. We present an optimizable loss function, equal accuracy ratio (EAR), that measures the sequence-level performance disparity between different user groups and we show that explicitly optimizing this objective reduces the performance gap and improves the multilingual recognition accuracy. (2) While having good accuracy on the seen training language, the multilingual systems do not generalize well to unseen testing languages, which we refer to as cross-lingual recognition accuracy. We introduce language embedding using external linguistic typologies and show that such embedding can significantly increase both multilingual and cross-lingual accuracy. We illustrate the effectiveness of the proposed methods with experiments on multilingual and multi-user and multi-dialect corpora

    Mitigating the Exposure Bias in Sentence-Level Grapheme-to-Phoneme (G2P) Transduction

    Full text link
    Text-to-Text Transfer Transformer (T5) has recently been considered for the Grapheme-to-Phoneme (G2P) transduction. As a follow-up, a tokenizer-free byte-level model based on T5 referred to as ByT5, recently gave promising results on word-level G2P conversion by representing each input character with its corresponding UTF-8 encoding. Although it is generally understood that sentence-level or paragraph-level G2P can improve usability in real-world applications as it is better suited to perform on heteronyms and linking sounds between words, we find that using ByT5 for these scenarios is nontrivial. Since ByT5 operates on the character level, it requires longer decoding steps, which deteriorates the performance due to the exposure bias commonly observed in auto-regressive generation models. This paper shows that the performance of sentence-level and paragraph-level G2P can be improved by mitigating such exposure bias using our proposed loss-based sampling method.Comment: INTERSPEECH 202

    Target Detection in Sea Clutter Based on Combined Characteristics of Polarization

    No full text
    Polarization is a property applying to transverse waves that specifies the geometrical orientation of the oscillations. This paper proposes a method for detecting small targets on the sea surface based on the combination of polarization features of two models. The scattering mechanism of sea clutter is random scattering at low glazing angle or glancing angle and the randomness is high as the angles do not have any specified shape. However, a target has a specific shape, and thus, the randomness of scattering will be less. Clutter is a term used for unwanted echoes in electronic systems, particularly in reference to radars. Such echoes typically return from ground, sea, rain, and animals/insects. In this literature, the randomness of a scattering mechanism in an echo is obtained from the probability density functions of polarization entropy using the Cloude decomposition model. Further, the proportion of scattering at spherical, dihedral, and helicoid angles from the target echoes will be different in the sea clutter. Therefore, the relative coefficient of power of these three scattering components in each echo is extracted based on Krogager polarization decomposition. Then, polarization features with good separability and complementarity are selected to form the polarization feature vector, and the characteristics are verified by Principle Component Analysis (PCA). Finally, One Class Support Vector Machine (OCSVM) is used for classification and recognition based on the polarization decomposition feature vector. Instead of single-polarization detection methods, our method uses two polarization modes to extract the decomposition features with separability and complementarity through polarization coherent decomposition and incoherent decomposition, respectively. The experimental results of the IPIX data show the effectiveness of our method. Thus, the detection performance of our model is better than those methods based on single-polarization decomposition in complex and difficult sea conditions

    Effects of different iron treatments on wine grape berry quality and peel flavonoid contents

    No full text
    Abstract In this study, eight‐year‐old wine grape plants (Cabernet Sauvignon) were subjected to five different iron treatments: ferrous sulfate, ferric ethylenediaminetetraacetic acid (EDTA‐Fe), ferric citrate, ferric gluconate, and ferric sugar alcohol, and conventional fertilization. Foliar spraying with clear water was used as the control treatment. The effects of different iron treatments on berry quality and flavonoid accumulation in grape peels were explored. All five iron treatments affected the sugar, acid, and peel flavonoid contents of grape berries, but the contents varied greatly among the different iron treatments. Foliar spraying with iron increased berry sugar content and reduced acid content. In addition, foliar spraying with ferrous sulfate, EDTA‐Fe, ferric gluconate, and ferric sugar alcohol reduced the total anthocyanin, flavanol, and flavonol contents in the peel. The unique flavonoid monomer content of the peel was significantly higher under ferric citrate treatment than under the control and other iron treatments. Moreover, the results showed that foliar spraying with ferric citrate balanced the berry sugar–acid ratio and also increased the anthocyanin, flavanol, and flavonol contents of the grape peel, thereby improving the overall nutritional status of the berries and the final wine quality. The results obtained in this study demonstrate that different iron treatments could improve grape berry quality and clarify the effects of different exogenous iron treatments

    Multi-Scale Fractal Characteristics of the Pore System in Low-Permeability Conglomerates from the Junggar Basin

    No full text
    The pore structure and its complexity play a critical role in fluid migration and recovery efficiency. Multiple pore types, broad pore size distribution (PSD), and extremely irregular pore morphology hinder the comprehensive investigation of pore systems and their complexity in low-permeability conglomerates. In this study, the multi-scale pore system and fractal characteristics of the Permian Lower Wuerhe Formation and Triassic Baikouquan Formation conglomerates from the Junggar Basin were investigated, combining physical property analysis, casting thin sections, scanning electron microscopy, and Nuclear magnetic resonance (NMR). The results show that the pore system of conglomerates consists of residual intergranular pores (RIPs), dissolution pores (DPs), clay-related pores (CRPs), and microfractures. Three types of PSD were identified according to the shape of the T2 spectrum. Based on the fractal characteristics derived from NMR data, pore systems in conglomerates were divided into macropores (mainly RIPs and DPs), mesopores (mainly CRPs), and micropores (reflect adsorption spaces). The fractal dimension of macropores (D3) increases with the increase of clay mineral content and the decrease of contents of quartz and feldspar. Moreover, the volume of macropores decreases with the increase of clay mineral content and the decrease of contents of quartz and feldspar. In addition, the fractal dimensions and volumes of mesopores and micropores have no obvious relationship with mineral composition. D3 and macropore volume control the physical properties and fluid mobility of conglomerates. T2,gm shows a strong negative correlation with D3 and macropore volume. Meanwhile, the high value of D3 would reduce the volume of macropores. These results demonstrate that D3 is a good indicator to reveal the quality of pore structure in low-permeability conglomerates

    Fertigation and Carboxymethyl Cellulose Applications Enhance Water-Use Efficiency, Improving Soil Available Nutrients and Maize Yield in Salt-Affected Soil

    No full text
    Conventional organic soil amendments and drip irrigation are insufficient for mitigating soil salinization. The development of a more potent soil amendment with higher water retention capability is critical. Carboxymethyl cellulose (CMC) has excellent water retention and adsorption properties and is suitable for soil water retention and amendment; however, its effects on water and salt distribution, soil nutrients, and maize yield have not been clearly investigated. We set up five treatments with flood irrigation (CK), drip irrigation (W), drip irrigation combined with 100 kg CMC ha−1 (WC1), drip irrigation combined with 200 kg CMC ha−1 (WC2), and drip irrigation combined with 300 kg CMC ha−1 (WC3). Our findings demonstrate that the application of CMC in conjunction with drip irrigation led to a significant surge in soil water content within the 0–40 cm layer, ranging from 3.73% to 16.46%, while simultaneously inducing a reduction in salt content of 4.08% to 16.61%. Consequently, this resulted in a desalination rate spanning from 10.32% to 12.93%. The salt was gradually washed down and formed a desalination area with the drip emitter as the center, and the salt distribution characteristics shifted from a surface accumulation type to a bottom deposition type. The drip irrigation and CMC application also increased the content of available nutrients, reduced surface evaporation, underground water loss, and maize evapotranspiration, and improved water-use efficiency, thus increasing the aboveground biomass and grain yield. In summary, CMC had a significant effect on water retention, desalination, and yield increases. It can serve as a novel soil amendment for salt-affected soil

    Classification and Evaluation of Shale Oil Reservoirs of the Chang 71-2 Sub-Member in the Longdong Area

    No full text
    Establishing a suitable classification and evaluation scheme is crucial for sweet spot prediction and efficient development of shale oil in the Chang 71-2 sub-member of the Longdong area. In this paper, a series of experiments, such as casting thin sections (CTS), scanning electron microscopy (SEM), low-temperature nitrogen adsorption (LTNA), high-pressure mercury intrusion porosimetry (HMIP), and nuclear magnetic resonance (NMR), were integrated to classify the pore throats and shale oil reservoirs in the study area. Moreover, the pore structure characteristics of different types of reservoirs and their contributions to productivity were revealed. The results show that the pore-throat system can be divided into four parts: large pore throats (>0.2 μm), medium pore throats (0.08~0.2 μm), small pore throats (0.03~0.08 μm), and micropore throats (<0.03 μm). Based on the development degree of various pore throats, the reservoir is divided into four types: type I (Φ ≥ 10%, K > 0.1 mD), type II (Φ ≥ 8%, 0.05 mD < K < 0.1 mD), type III (Φ ≥ 5%, 0.02 mD < K < 0.05 mD) and type IV (Φ < 5% or K < 0.02 mD). From type I to IV reservoirs, the proportion of dissolved pores and intergranular pores gradually decreases, and the proportion of intercrystalline pores increases. The proportion of large pore throats gradually decreases, and the proportions of medium pore throats and small pore throats increase initially and then decrease, while the proportion of micropore throats increases successively. The NMR pore size distribution changes from the right peak to the left peak. The developed section of the type I reservoir corresponds to the oil layer, and the developed section of the type I and II reservoirs corresponds to the poor oil layer. In contrast, the developed section of the type III and IV reservoirs corresponds to the dry layer. The daily production from single wells is primarily attributable to type I and II reservoirs

    Classification and Evaluation of Shale Oil Reservoirs of the Chang 7<sub>1-2</sub> Sub-Member in the Longdong Area

    No full text
    Establishing a suitable classification and evaluation scheme is crucial for sweet spot prediction and efficient development of shale oil in the Chang 71-2 sub-member of the Longdong area. In this paper, a series of experiments, such as casting thin sections (CTS), scanning electron microscopy (SEM), low-temperature nitrogen adsorption (LTNA), high-pressure mercury intrusion porosimetry (HMIP), and nuclear magnetic resonance (NMR), were integrated to classify the pore throats and shale oil reservoirs in the study area. Moreover, the pore structure characteristics of different types of reservoirs and their contributions to productivity were revealed. The results show that the pore-throat system can be divided into four parts: large pore throats (>0.2 μm), medium pore throats (0.08~0.2 μm), small pore throats (0.03~0.08 μm), and micropore throats ( 0.1 mD), type II (Φ ≥ 8%, 0.05 mD < K < 0.1 mD), type III (Φ ≥ 5%, 0.02 mD < K < 0.05 mD) and type IV (Φ < 5% or K < 0.02 mD). From type I to IV reservoirs, the proportion of dissolved pores and intergranular pores gradually decreases, and the proportion of intercrystalline pores increases. The proportion of large pore throats gradually decreases, and the proportions of medium pore throats and small pore throats increase initially and then decrease, while the proportion of micropore throats increases successively. The NMR pore size distribution changes from the right peak to the left peak. The developed section of the type I reservoir corresponds to the oil layer, and the developed section of the type I and II reservoirs corresponds to the poor oil layer. In contrast, the developed section of the type III and IV reservoirs corresponds to the dry layer. The daily production from single wells is primarily attributable to type I and II reservoirs

    Transcriptome Analysis of Responses to Dengue Virus 2 Infection in <i>Aedes albopictus</i> (Skuse) C6/36 Cells

    No full text
    Dengue virus (DENV), a member of the Flavivirus genus of the Flaviviridae family, can cause dengue fever (DF) and more serious diseases and thus imposes a heavy burden worldwide. As the main vector of DENV, mosquitoes are a serious hazard. After infection, they induce a complex host–pathogen interaction mechanism. Our goal is to further study the interaction mechanism of viruses in homologous, sensitive, and repeatable C6/36 cell vectors. Transcriptome sequencing (RNA-Seq) technology was applied to the host transcript profiles of C6/36 cells infected with DENV2. Then, bioinformatics analysis was used to identify significant differentially expressed genes and the associated biological processes. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was performed to verify the sequencing data. A total of 1239 DEGs were found by transcriptional analysis of Aedes albopictus C6/36 cells that were infected and uninfected with dengue virus, among which 1133 were upregulated and 106 were downregulated. Further bioinformatics analysis showed that the upregulated DEGs were significantly enriched in signaling pathways such as the MAPK, Hippo, FoxO, Wnt, mTOR, and Notch; metabolic pathways and cellular physiological processes such as autophagy, endocytosis, and apoptosis. Downregulated DEGs were mainly enriched in DNA replication, pyrimidine metabolism, and repair pathways, including BER, NER, and MMR. The qRT-PCR results showed that the concordance between the RNA-Seq and RT-qPCR data was very high (92.3%). The results of this study provide more information about DENV2 infection of C6/36 cells at the transcriptome level, laying a foundation for further research on mosquito vector–virus interactions. These data provide candidate antiviral genes that can be used for further functional verification in the future
    corecore